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THERMOSTRESSED STATE AT A LOCAL THERMAL
CONTACT IN TURNING FRICTION

A. A. Evtushenko and E. G. Ivanik UDC 539.377

Processes of friction heating at a local thermal contact in turning friction are studied.

Turning friction is usually understood as a rclative rotation of contacting bodies around an axis coinciding
with the common normal to the contact surfacc. The temperature at a steady-statc thermal contact was studied in
[1]. In the present work the authors consider the development of the process of friction heating starting at a moment
which is assumed to be the initial time.

1. Let two semi-infinite clastic bodics related to a cylindrical coordinate system (r, €, z) have a circular
contact area 0 < r < g and rotate with relative angular velocity w. In this case, friction forces obeying Amonton’s
law [2] give rise to heat sources distributed over the contact area. It is assumed that there is no heat transfer from
the free surface of the contacting bodies and that all the heat generated in the contact region is absorbed by the
contacting bodies. The intensity of the heat flux towards one of the bodies in the friction pair is

q(ry=yfwrp(r), r=<a. (H

Here v is the heat flux separation coefficient [31]; p(r) is the contact pressure in Hertz's problem [2]

vo=my[1- ).

where pg = 3P/ 2a%; P is the pressing force.
The temperature field of a semi-infinite body causcd by heat flux (1) at an arbitrary time 1 is determined
by solution of the parabolic heat conduction equation

1 aT 3
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with the initial condition
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boundary conditions
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and the regularity condition

{7,91}-»0 Al Pl (7

In Eq. (5)
g = vfwpg . (8)

Without mass forces and ignoring inertia effects, the components of the displacement vector u,’- and the
stress tensor o{j causcd by the nonuniform temperature distribution 7(r, z, 7) are rclated to the thermoclastic
displacement potential ¥ and the Lava function L by the known relationship [4]. The functions W and L are

solutions of the differential equations

AW = 8T, )

AAL =0. (1;

Here B =a(l + v)/(1 ~ »).
In the case considered the components of the displacement vector and the stress tensor should satisfy the

boundary conditions

anh
(12)

and the descent conditions

{u;,ui}»o at P4, (13

2. A solution of the boundary-value problem determined by equations and relations (1)-(8) is obtained by
successive use of the Hankel integral tranform of zero order with respect to the variable r and of the Laplace
transform with respect to 1. As a result

Tp,Z, FOy=AlpE®E, Z, Fo)Jy(Ep) dé. (14
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the prime at 2 " means that the term at m = 0 is taken with the factor 1/2.
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Fig. |. Variation of dimensionless temperature 7° on surface z (a) and along
axis of rotation p =0 (b): 1) Fo=1; 2) 10; 3) 100.

Under steady-state conditions of heat releasc at Fo = o the function ® tends to exp (—£2), and it follows
from (14) that

T, 2)= AJp ) exp (= 52) g (o) di.
The temperature at the center of the contact area, i.e., at p =0 and Z = 0, is defined by the expression
Tozzxzw@')dg. (1)
Using the value of the integral from |5

® o5 2
{E fm+1(5/2)d5:n(2m+1)(2”7*3)’

we transform relation (15) to the form

A S DT m ) A (16)
To—4AmE=0 Cm ¥ Qm+3) = 3"

It should be noted that formula (16) for the steady-state temperature at the center of the contact arca was
originally obtained in [1].

Plots of the relative temperature 77 = /A (14) on the surface z = 0 and along the axis of rotation p = 0
with fixed parameter Fo = 1; 10; 100 arc presented in Fig. .

Unlike the case of mutual sliding of bodies, in the case of turning, the development of temperature fields
has characteristic features. While in the case of mutual sliding the maximum surface temperature is at the center
of the heating region [6], in the case of turning the maximum temperature develops inside the contact region at a
distance from the axis of rotation cqual to about a half of the contact radius. In particular, at Fo =100 the maximum
7" of 0.36 is at the point p = 0.51. Outside the contact region (o > 1) the temperature declines rapidly.

3. Solutions of Egs. (9) and (10) obtained with the help of Hankel and Laplace the integral transforms are
written in the form

£

b, Z, F0)=/\ﬂftp(§)1l)| (&, Z, FoyJ, (bp) d&,
0
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Here
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Fig 3. Plot of J3max versus the parameter wy: 1, 3) Fo=1; 2, 4) 10; 1
=150=zZ2=<1;3,Hp=1S52=0.

w=2(I+v)/40z~,/fwa2 (18)
t (I1-vK '

The temperature stress field induced in an elastic body by turning friction is obtained using relations (17).
The unknown components of the temperature stress tensor are expressed in terms of improper integrals as follows:
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The total stress field caused by turning friction at an arbitrary point X(r, z) of the body is expressed as

the sum
. . Q20
o = Py [ i (X) + w U/ (X, Fo)] (i, j=r, 0, ).
Here aj/ = a,/ ' po, O o'f/ C are the dimensionless stresses in Hertz's isothermal problem 2 ] and thermal
stresses (19, respectively. ln the case of friction contact of turning, the level of the stressed state of the heated

body will be determined in terms of the second invariant of the stress deviator J; (the Huber—Mieses stress |7 D

: ,) 2
Sy = {é [(arr - 069)2 + (opg — U:z)z (0~ Orr)ii + (yarz)b} :

where the stress components oy are given by formulas (20).
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Figurc 2 shows the calculated levels of the dimensionless stress levels /5 = J5/Jg plotted at v = 0.3, Fo =
10. It is seen, for example, that for w, = 3 the maximum stress level J3 is lower than the stress level at w, = 0 (the
heat relcase is zcro), while at w, = 8 the stress concentration in the body exceeds the stress concentration in the
isothermal problem. This is confirmed by the data prescnted in Fig. 3, where the maximum J'(J3m,4) is plotied
versus the parameter wy. It is clearly seen that there exists a local minimum of J3,,, attained at a certain (critical)
value of the parameter w,. As follows from (18), its expression contains both an invariable side (mechanical and’
thermophysical propertics of the material) and terms caused by the contact (y, f, w). The present numcrical analysis
shows that for a presct friction pair conditions at the contact can be chosen such that the overall level of the stressed
state of the body duce to friction heating is decreased in comparison with the case of contact ignoring heat release. L
The results of numerical studies presented in Figs. 2 and 3 also show that at a low level of thermal stresses a
maximum Huber—Micses stress develops inside the body and with increase in the thermal stress (increasc in the
paramcter wy) it emerges at the surface of the body. '

The present data can be a basis for study of the conditions of the development of plastic flow in local regions
of contacting bodies.

NOTATION

/., friction coefficient; 4, K, thermal diffusivity and thermal conductivity; A =
asart + (1/r-98/9r) + az/azz, Laplace operator; a, lincar thermal expansion coefficient; v, Poisson coefficient: u,
shear modulus; 7, tempcrature; J,(-), first order Bessel function of v; erf (), probability integral.
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